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Abstract. Solitary wave solutions are determined analytically for two forms of nonlinear
Schr̈odinger equations with saturation effects in the denominators of their nonlinearity terms.
Pertinent parameters, being explicitly stated, make the results applicable to soliton phenomena.

1. Introduction

Waves which propagate with constant velocity and, in which dispersion (or diffraction)
and nonlinearity harmonize to prevent dissipation are conventionally known as solitary
waves. They occur both experimentally and theoretically [1] in many physical problems and
applications of plasma physics [2, 3, 9], nonlinear surface waves [4, 5], pulse propagation
in semiconductor doped glass fibres [6–8], and solids. Particularly for device modelling
applications where saturation effects may become significant, the following forms of
nonlinear Schr̈odinger equations are the dynamic governing equations

ih̄
∂9

∂t
+ b∂

29

∂x2
− a9 + c|9|k9

1+ γ |9|k = 0 bc > 0 (1)

ih̄
∂8

∂t
+ b∂

28

∂x2
− a8+ c|8|k8

1+ γ |8|k ±
d|8|2k8

1+ γ |8|k = 0 bc > 0 d > 0 (2)

wherek = 2n, for n = 1, 2, 3, 4, 5, . . ..
Even for k = 2, to our knowledge, only numerical solitary wave solutions of (1) and

(2) are available. We present the fundamental analytical solutions in this paper. We have
utilized the method of [1]. However, for the reason that collision between two solitary
waves would, subject to some physical conditions, be either elastic or inelastic for which
both earlier and recent research reports exist in the literature, one may sometimes refer to
a solitary wave as a soliton. Additionally, analytical solutions (which may not be exact) of
(1) and (2) are required for global understanding of relations between soliton parameters.

2. The analytical method

Saturation effects, physically characterized byγ in (1) and (2), mainly delimit the magnitude
of the maximum amplitude, which, in turn, sustains the practical limit of the soliton length
(cf the cubic nonlinear Schrödinger equation, (CNLSE), [1], but note that the cubic quintic
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nonlinear Schr̈odinger equation, (CQNLSE), [1], is saturable). This suggests looking for
the fundamental solution of (1) in the form

9(x, t) = A0 ei(αx−α0−ωt)sech2/k
x − x0− vt

Ts
(3)

so that the parametersα, ω, A0, andTs have relating expressions to be determined. The
initial conditions determine the phase constant,α0; x0 has the meaning of soliton centre,
and the soliton velocity,v, can be treated as a free parameter [1].

Substituting (3) into (1), yields(
h̄ω − α2b − a + 4b

k2T 2
s

)
+
[
(h̄ω − α2b − a)γAk0 + cAk0

− 4b

k2T 2
s

+ 4bγAk0
k2T 2

s

− 2b

kT 2
s

(
2

k
+ 1

)
γAk0sech23

]
sech23

+ 2i

kTs
(h̄v − 2bα)(1+ γAk0sech23) tanh3 ≡ 0 (4)

where

3 = x − x0− vt
Ts

. (4a)

As indicated, equation (4) consists of three terms at the left-hand side, (LHS), such that
every term is identically equal to zero. From the first term one obtains

ωh̄ = α2b + a − 4b

(kTs)2
. (5)

The third term yields

α = h̄v
2b

(6)

and the second term leads to

A0(x, t) =
{

2b(2+ k)
ck2T 2

s − 2b(2+ k)γ sech23

}1/k

. (7)

At the centre of a solitary wave, the condition is such that

3 = 0⇒ sech3 = 1 (7a)

which applies to (7) to yield

A0 =
{

2b(2+ k)
ck2T 2

s − 2b(2+ k)γ
}1/k

. (8)

A solitary wave solution of (1) is, therefore, given by

9(x, t) =
{

2b(2+ k)
ck2T 2

s − 2b(2+ k)γ
}1/k

ei(αx−α0−ωt)sech2/k
x − x0− vt

Ts
. (9)

If the condition implied in (7a) is not effected by using (7) in (3), one gets another solitary
wave solution that takes the following form

9(x, t) = ei(αx−α0−ωt)
{

2b(2+ k)
ck2T 2

s cosh2((x − x0− vt)/Ts)− 2b(2+ k)γ

}1/k

. (10)

Equations (9) and (10) have the same magnitude of input amplitude given by equation (8)
and soliton length,Ts , but, they differ in integral contents implying a difference in their
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input intensities. A significant finding, in some studies of equation (1) to be reported in a
later paper, is that fork = 2 the stationary solitary wave profiles obtained from equation (9)
agree with the well known numerically obtained profiles of [7].

Now, from the usual normalization of the propagating field,9, in the form

I0 =
∫ ∞
−∞
|9|2 dx (11)

and using (9) in (11), the soliton width,Ts , can be determined from

I0 = 24/(k−1) 0
2(2/k)

0(4/k)
Ts

{
2b(2+ k)

ck2T 2
s − 2b(2+ k)γ

}2/k

(12)

where0(ξ) is the gamma function, andI0 has the meaning of conserved number of particles.
We observe that ifγ = 0, in equation (8), the expression for the maximum amplitude
becomes

A0 =
[

2(k + 2)

k2T 2
s

b

c

]1/k

(13)

which agrees with equation (5) of [1].
The parameterc, would normally be independent ofγ as in a few earlier works [6, 7, 10],

and also by inference from actual experimental results [11]. However, ifc ∝ γ , we have
a different form of denominating saturating nonlinearity such as that occurring in nonlinear
plasma physics [9]. We thus allude to the physical significance thatc, in its latter case,
points to the agreement between denominating saturating nonlinearity and the exponential
saturating nonlinearity [6, 7]. By agreement one refers to the common features: (i) ifγ = 0,
the medium is linear, and (ii) ifγ = ∞, the medium is Kerr-like. The parameterc, in its
former case, contrasts with those features, i.e. forγ = 0 or∞, the medium is Kerr-like or
linear.

Now we consider equation (2). For solitary waves, the following conditions are presently
verifiable, (i)b > 0, c > 0 and+d; (ii) b < 0, c < 0, and−d. Confusion should not arise
if one states results for which condition (i) applies, as follows. Before proceeding however,
a peculiar physical application of equation (2) is recapitulated.

The equation is restricted more to the evolution of solitary waves in the phenomena of
bistability, because nonlinearity takes the form reported by Gibbset al [12], whereink = 2.
Also, it is the dynamic equation for soliton pulse propagation in double-doped semiconductor
optical fibres [8]. In a broader analysis, the equation subsumes the generalized equations
that satisfy multistability criteria in the sense established by Kaplan [13, 16]. For clarity,
we thus present the analytical solution in two cognate stages: (i) two-state solution and
(ii) quintic-like solution.

In the case of the two-state solution, one looks for a fundamental solution of the form

8(x, t) = Aµ ei(αx−α0−�at)sech2/k
x − x0− vt

Ta
(14)

whereµ connotes the possibility of two amplitude values corresponding to one value of
soliton width,Ta. Here,µ = 1 andµ = 2 will refer to normal and saturated amplitudes
respectively. All other parameters are as before.

Substituting (14) into (2) one obtains the following expressions forα, �a and the
amplitudesA1 andA2

h̄�a = α2b + a − 4b

(kTa)2
(15)
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A1 =
[

1

T 2
a

2(k + 2)

k2

b

c

]1/k

(16)

A2 =
[

1

T 2
a

2(k + 2)

k2

b

d
γ

]1/k

(17)

whereα is given by equation (6). An important result in equation (17) is that the saturated
amplitudeA2 = 0 if γ = 0, i.e. the medium becomes Kerr-like exclusively adapted to
CNLSE, [1].

For the quintic-like solution, the nonlinearity power, 2k, in the last term of equation (2),
provides further insight that another solution exists with a different set of propagation
parameters, which is an implication of the main multistability criterion [13]. Thus, as in [1]
one seeks a fundamental solution of the form

8(x, t) = B ei(αx−α0−�bt)
(

1+ g cosh
x − x0− vt

Tb

)−1/k

. (18)

Henceforth, the principal problem is to determine the parameterg.
Substitution of (18) into (2) yields the following results

h̄�b = α2b + a − b

(kTb)2
(19)

g = sechη (20)

B =
[

I0

Tb0(2/k)P
(k−4)/2k
−1/2 (coshη)

]1/2
(tanhη)1/k

(2π sinhη)1/4
(21)

Tb =
[

I0

0(2/k)(2π sinhη)1/2P (k−4)/2k
−1/2 (coshη)

(
k2

2+ k
c

b
tanhη

)2/k]k/(k−4)

(22)

where,α is given by (6),P ν−1/2(ξ) is the Legendre function, and the following equation
determinesη

b(2+ k)
2ck2(k + 1)

{
3γ + kγ + (k + 1)γ sech2η − 2d(2+ k)

tanh2 η

}
=
{

1

(2π sinhη)1/20(2/k)P (k−4)/2k
−1/2 (coshη)

(
k2

2+ k
c

b
tanhη

)2/k}2k/(k−4)

(23)

whereI0 is the conserved particle number given by equation (11).
Some remarks can be made about the parameterd. Mathematically, equation (2) may

be considered as a special case of (1) ifd does not depend onγ . If d = 0, as an illustration,
one obtains equation (1). Thus, all results of equations (19) to (23) make up another solution
of (1), although equation (17) ceases to be physically valid. However, the physics of a given
problem may be such thatd is a function ofγ . As a typical case, it could be shown thatd
is linearly related toγ in [8].

For most applications, equation (23) leads to a transcendental equation for whichη is
the unknown, i.e.b, c, d, k, γ and I0 are known. Desire for accuracy would then require
any suitable numerical scheme to solve the resultant equation. At best, the equation solves
graphically.

One of the current research interests is in the application of (2) to soliton pulse
propagation with semiconductor double-doped optical fibres [8] as waveguides. The
applicable dimensionless form of (2) can be shown to have typical parameter values ¯h = 1,
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a = 0, b = 1/2, c = 1 andk = 2. For this case, the solitary wave solution yields the
following

12η2

I 2
0

= γ (8− 3 tanh2 η)− 8d (24)

8(x, t) =
(
I0

2Tb

sinhη

η

)1/2

ei(αx−α0−�bt)
(

coshη + cosh
x − x0− vt

Tb

)−1/2

(25)

α = v �b = 1

2

(
v2− 1

4T 2
b

)
(26)

B =
(
I0

2Tb

tanhη

η

)1/2

(27)

Tb = η

I0 tanhη
(28)

where typical values ofγ and d are available (see [8]) and typical values ofI0 are also
obtainable from relevant literature (see [11]). Equations (17) and (27) are observed to be
related.

3. Lagrangian formulation

It is simple to show that equations (1) and (2) can be expressed as variational problems
corresponding to Lagrangians of the form

L1 = i
h̄

2

(
9
∂9∗

∂t
−9∗ ∂9

∂t

)
+
(
a − c

γ

)
|9|2+ b

∣∣∣∣∂9∂x
∣∣∣∣2+ c

γ
IL1 (29)

L2 = i
h̄

2

(
8
∂8∗

∂t
−8∗ ∂8

∂t

)
+
(
a − c

γ
± d

γ 2

)
|8|2

+b
∣∣∣∣∂8∂x

∣∣∣∣2∓ 2d

(2+ k)γ |8|
k+2+ 1

γ

(
c ∓ d

γ

)
IL2 (30)

whereIL1 andIL2 have the same form expressible as

IL1 = 1

γ 1/n

∫ τ

0

dy

1+ yn (31)

τ = γ 1/2|9|2 n = k/2 (31a)

and, similarly forIL2, τ = γ 1/2|8|2. For every value ofn (i.e. k), IL1 or IL2 has a closed
form [15]. Equations (29) and (30) can be used to study stability analysis [14].

In the case ofk = 2 of which applications and physical problems are ubiquitous, the
appropriate Lagrangians are

L1 = i
h̄

2

(
9
∂9∗

∂t
−9∗ ∂9

∂t

)
+
(
a − c

γ

)
|9|2+ b

∣∣∣∣∂9∂x
∣∣∣∣2+ c

γ
ln(1+ γ |9|2) (32)

L2 = i
h̄

2

(
8
∂8∗

∂t
−8∗ ∂8

∂t

)
+
(
a − c

γ
+ d

γ 2

)
|8|2+ b

∣∣∣∣∂8∂x
∣∣∣∣2∓ d2 |8|4

+ 1

γ

(
c ∓ d

γ

)
ln(1+ γ |8|2) (33)

where an asterisk denotes a complex conjugate in equations (29), (30), (32) and (33). For
pulse propagation in optical fibres, a variational approach [17] is possible.
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For phenomena ofk > 4 (i.e. n > 2), spikons [14] would be cited. Ifn = 2 or 3,
corresponding expressions forIL1 (IL2) are as intermediately easy to obtain as for the case
n = 1, [15]. However, from [15], we give below the corresponding expressions forn > 4

IL1(k > 8) = 1

γ 1/n

{
− 2

n

(n/2)−1∑
q=0

Pq cos
2q + 1

n
π + 2

n

(n/2)−1∑
q=0

Qq sin
2q + 1

n
π

}
(34)

for n > 2r; r = 2, 3, 4, 5, . . . , i.e. even values ofn; and

IL1(k > 8) = 1

γ 1/n

{
1

n
ln(1+ τ)− 2

n

(n−3)/2∑
q=0

Pq cos
2q + 1

n
π + 2

n

(n−3)/2∑
q=0

Qq sin
2q + 1

n
π

}
(35)

for n > (2r+1); r = 2, 3, 4, 5, . . . , i.e. odd values ofn; wherePq andQq are defined thus

Pq = 1

2
ln

(
τ 2− 2τ cos

2q + 1

n
π + 1

)
(36)

Qq = tan−1

{
τ sin((2q + 1)/n)π

1− τ cos((2q + 1)/n)π

}
(37)

with τ given by equation (31a).
Either from the Lagrangians or directly from (1) and (2), one can work out the first three

conserved quantities. The first integral is of the form given by equation (11); the second,
which corresponds to the momentum, is of the form

I1 = ih̄
∫ ∞
−∞

(
8
∂8∗

∂x
−8∗ ∂8

∂x

)
dx. (38)

The third integral corresponds to the conserved energy which thus depends onk. If
k = 2, the third integral of equation (2) is

I2 =
∫ ∞
−∞

{
2b

∣∣∣∣∂8∂x
∣∣∣∣2+ (a − c

γ
± d

γ 2

)
|8|2∓ d

2γ
|8|4+ 1

γ 2

(
c ∓ d

γ

)
ln(1+ γ |8|2)

}
dx.

(39)

To obtain the third integral of (1) one putsd = 0 in (39), and additionally,d may not depend
on γ , but, one should also realize a theoretical implication that another set of propagation
parameters are then deducible. By inference, as noted earlier, the results of [8] imply that
for d = 0, the saturation parameterγ = 0, i.e.d, depends onγ .

If k > 2, the third integral is not explicitly obtainable. The expression will involve
series, thus requiringγ |8|k < 1; this implies that approximation is inevitable.
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